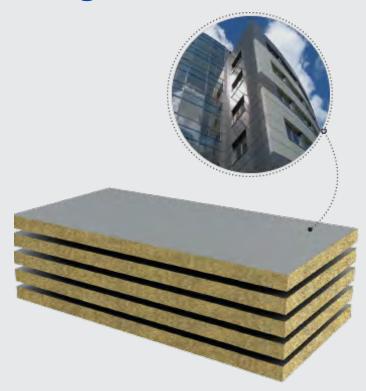
ENVIRONMENTAL PRODUCT DECLARATION


In accordance with ISO 14025 and EN 15804:2012+A2:2019

Stone Wool Boards with Black Tissue Glass Fiber

Ravago
BUILDING
SOLUTIONS

from

RBS Ravago

PROGRAMME
The International EPD® System www.environdec.com

EPD REGISTIRATION NUMBER S-P-04876

PROGRAMME OPERATOR
EPD International AB & EPD Turkey

PUBLICATION DATE 2022-09-15

GEOGRAPHICAL SCOPE
Global

VALID UNTIL 2027-09-15

THE INTERNATIONAL EPD® SYSTEM

PROGRAMME INFORMATION

Programme Information

Programme: The International EPD® System

Address : EPD International AB Box 21060 SE-100 31 Stockholm, Sweeden

Website : www.environdec.comE-mail : info@environdec.com

Programme Operator

Programme: EPD Turkey, managed and run by: SÜRATAM A.Ş., www.suratam.org

Address : Nef 09 B Blok No: 7/15 34415 Kagithane/Istanbul, Turkey

Website: www.epdturkey.org
E-mail: info@epdturkey.org

Information about verification and reference PCR:

Product category rules (PCR) PCR: PCR 2019:14 Construction products (EN 15804:A2) Version 1.1 c-PCR005 Thermal insulation products (EN 16783: 2017) PCR review was conducted by The Technical Committee of the International EPD® System. See www.environdec.com/TC for a list of members. Review chair: Claudia A. Peña, University of Concepción, Chile. The review panel may be contacted via the Secretariat www.environdec.com/contact. Independent third-party verification of the declaration and data, according to ISO 14025:2006: EPD process verification Procedure for follow-up of data during EPD validity involes third party verifier: Yes No											
PCR: PCR 2019:14 Construction products (EN 15804:A2) Version 1.1 c-PCR005 Thermal insulation products (EN 16783: 2017) PCR review was conducted by The Technical Committee of the International EPD® System. See www.environdec.com/TC for a list of members. Review chair: Claudia A. Peña, University of Concepción, Chile. The review panel may be contacted via the Secretariat www.environdec.com/contact. Independent third-party verification of the declaration and data, according to ISO 14025:2006: EPD process verification Third party verifier Ing. Luca Giacomello. PMP® Via Leonardo Fea 35 10148 Torino - Italy Approved by International EPD System Technical Commiee, supported by the Secretariat Procedure for follow-up of data during EPD validity involes third party verifier:	CEN standard EN 15804 serves as the Core Product Category Ru	les (PCR)									
The Technical Committee of the International EPD® System. See www.environdec.com/TC for a list of members. Review chair: Claudia A. Peña, University of Concepción, Chile. The review panel may be contacted via the Secretariat www.environdec.com/contact. Independent third-party verification of the declaration and data, according to ISO 14025:2006: EPD process verification EPD verification Third party verifier Ing. Luca Giacomello. PMP® Via Leonardo Fea 35 10148 Torino - Italy Approved by International EPD System Technical Commiee, supported by the Secretariat Procedure for follow-up of data during EPD validity involes third party verifier:	PCR: PCR 2019:14 Construction products (EN 15804:A2) Version	1.1									
EPD process verification Third party verifier Ing. Luca Giacomello. PMP® Via Leonardo Fea 35 10148 Torino - Italy Approved by International EPD System Technical Commiee, supported by the Secretariat Procedure for follow-up of data during EPD validity involes third party verifier:	The Technical Committee of the International EPD® System. See www.environdec.com/TC for a list of members. Review chair: Claudia A. Peña, University of Concepción, Chile.										
Ing. Luca Giacomello. PMP® Via Leonardo Fea 35 10148 Torino - Italy Approved by International EPD System Technical Commiee, supported by the Secretariat Procedure for follow-up of data during EPD validity involes third party verifier:		G									
	Ing. Luca Giacomello. PMP® Via Leonardo Fea 35	International EPD System Technical Commiee,									
☐ Yes ☑ No	Procedure for follow-up of data during EPD validity involes third p	arty verifier:									
	Yes No										

LCA Study & EDP Design Conducted by

Semtrio Sustainability Consulting BUDOTEK Teknopark, No 8/27 Umraniye / Istanbul Turkey www.semtrio.com

RBS Ravago has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category but from different programmes may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804. For further information about comparability, see EN 15804 and ISO 14025.

COMPANY INFORMATION

Owner of the EPD

RBS RAVAGO İNŞAAT YALITIM ÜRÜNLERİ A.Ş. Organize San. Böl. 20. Cad. No: 54

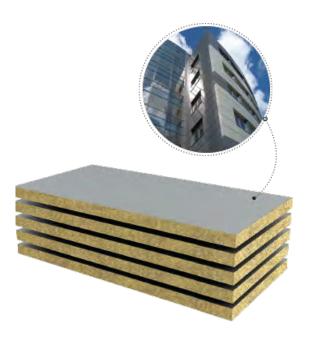
Kayseri / TURKEY

Contact

İbrahim Örgerin Ebru Ağrak ibrahim.orgerin@ravaqo.com ebru.agrak@ravaqo.com

The owner of the EPD - RBS RAVAGO - operates in more than 350 locations in 40 countries, being a member of the Belgium-based Ravago Group and a leader in the insulation industry by meeting the mineral rockwool requirement of an area of 20,000,000 sqm annually with its wide product range for thermal insulation, sound insulation and fire safety. RBS RAVAGO is located in Kayseri Organized Industrial Zone with its high technology equipment investments in a total area of 80,000 sqm with 56,000 sqm indoor area. RBS RAVAGO is the biggest mineral wool manufacturer in the region with an annual production capacity of 120,000 tonnes.

In addition to 25 different types of mineral rockwool products, RBS RAVAGO is producing Ceramic Wool and Agro used in soilless agriculture. RBS RAVAGO has become the only company in the sector supplying all mineral wool products in the last quarter of 2018 by starting mineral wool production with the new production line of glass wool. RBS RAVAGO, the only manufacturer that can produce all mineralwool insulation materials under the same roof, offers a wide range of products with new RBS RAVAGO bio according to various application areas.



PRODUCT INFORMATION

Product Name

Stone Wool Boards with Black Tissue Glass Fiber

Stone wool boards with black tissue glass fiber is an insulation material which contains %98 natural fibre and obtained by transforming the minerals and inorganic volcanic stones into natural fibre by melting them at high temperatures. Stone wool boards with glass tissue coated on one side. It ensures heat, sound and fire insulation in granite, marble, aluminium and glass claddings; and ensures fire insulation at air-conditioning surfaces.

Production

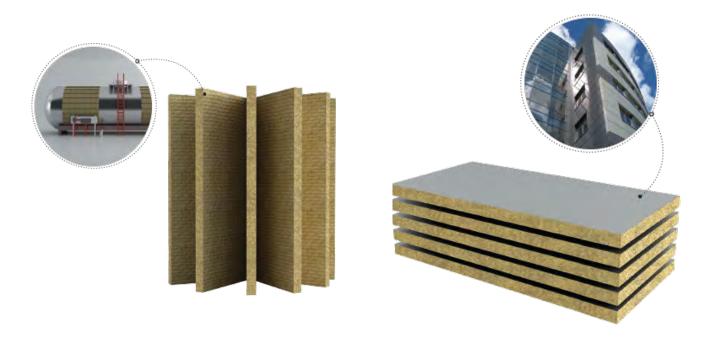
Inputs: The raw materials are measured and sent to a melting furnace. For Stone wool boards with black tissue glass fiber these are basalt, cement and limestone.

Furnace: The raw materials are melted in a furnace at very high temperatures, typically between 1300°C to 1500°C. The smoke created during this process is filtered and flue gases are cleaned to minimise any environmental impact.

Spinning: The droplets of melt exiting the furnace are spun into fibres. Droplets fall onto rapidly rotating flywheels or the mixture is drawn through tiny holes in rapidly rotating spinners. This process shapes it into fibres.

Binding: Small quantities of binding agents are added to the fibres. The structure and density of the product will be adapted according to its final usage.

Curing: The mineral wool is then hardened in a curing oven at around 200°C.


Cutting: The mineral wool is cut to the required size and shape, for example into rolls, batts, boards or it can be customised for use with other products. Off-cuts and other mineral wool scraps are recycled back into the production process, which further reduces inputs and energy requirements.

Packaging: Due to its impressive elasticity, mineral wool can be compressed during packaging to reduce its volume.

Technical Specification

Standard					80 k	g/m³						
EN 882	Legend (tolerance)	1200 mm										
EN 882	Width (tolerance)	600 mm										
EN 824	Determination of Squareness Maximum 5 mm	1 mm max.										
EN 825	Determination of Flatness Maximum 6 mm	i- 2 mm max.										
EN 826	Compressive Strength (10% deformation)	-	-	-	-	>15	>25	>35	>45			
EN 1604	Determination of Dimensional Stability	0	0	0	0	0	0	0	0			
EN 1667	Determination of Tensile Strength Vertical to Faces	-	-	-	-	>7.5	>10	>15	>15			
EN 1609	Short Term Water Absorpition WP	>1										
EN 12037	Long Term Water Absorpition WP	>3										
EN 12086	Water Vapor Diffusion Resistance Coefficient µ				>	·1						
EN 12667	Declared Thermal Conductivity (max. 0.04 W/(m.K)	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036			
EN 12667	Thermal Resistance (m²K/W) R				1.	39						
EN 13501- 1	Reaction to Fire	A1 Class										
	Melting Point				C 1	000						

UN CPC Code: 37990, Non-metallic mineral products n.e.c. (including mineral wool, expanded mineral materials, worked mica, articles of mica, non-electrical articles of graphite or other carbon and articles of peat).

LCA Information

Functional unit

1 m² of Stonewool Board with black tissue glass fiber with a thermal resistance of 1 K. m² .W¹ manufactured in RBS RAVAGO Manufacturing plant in Kayseri (TR).

Reference service life

Stonewool board with black tissue glass fiber is the lifetime of the building equipment is at least 50 years.

Time representatives

The production data in this LCA study represents the period of 1st January 2021-30th June 2021

Database(s) and LCA software used

Simpro v9.2 and Ecoinvent v3.7.1

Description of system boundaries

This EPD covers the cradle to grave and module D stages.

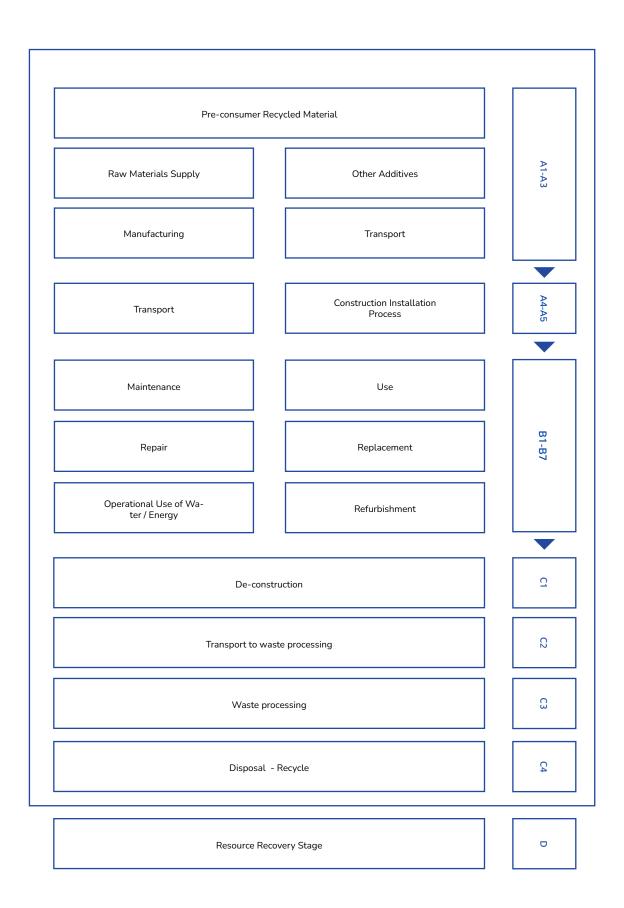
Data quality and data collection

According to EN 15804:2012+A2:2019 specific data was used for module A3 (Processes the manufacturer has influence over) and was gathered from the RBS Ravago manufacturing plant. Specific data includes actual product weights, amounts of raw materials used, product content, energy consumption, transport figures, water consumption and amounts of wastes. Data represents the period from 1st January 2021-30th June 2021. For secondary data Ecoinvent v3.7.1 data sets was used. LCA was modelled in SimaPro v9.2.

Allocation

Allocation of impacts among co-products was not applied.

Cut-off rules


Life Cycle Inventory data for a minimum of 99% of total inflows to the three life cycle stages have been included and a cut-off rule of 1% regarding energy, mass and environmental relevance was applied. Impacts caused by treatment operations have been calculated lower than 1% environmental relevance.

Modules declared, geographical scope, share of specific data (in GWP-GHG indicator) and data variation

	Pr	oduct Sta	age		ruction s Stage	Use Stage								End of L	ife Stage		Resource Recovery Stage
X Declared ND Not Declared	Raw Material Supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintanence	Repair	Replacement	Refurbisment	Operational Energy Use	Operational Water Use	De-construction	Transport	Disposal	Waste Processing	Reuse - Recovery - Recycling Potential
Modules	A1	A2	А3	A4	A5	B1	B2	ВЗ	B4	B5	B6	В7	C1	C2	C3	C4	D
Modules Declared	x	х	х	х	х	х	x	х	х	x	x	х	х	х	х	x	х
Geography	GLO	GLO	TR	TR	GLO	GLO	GLO	GLO	GLO	GLO	GLO	GLO	GLO	GLO	GLO	GLO	GLO
Specific data used		>99%		-	_	_	_	_	_	_	_	_	_	-	_	_	_
Variation- products	Not Relevant		nt	-	_	-	_	-	_	_	-	_	-	_	_	-	_
Variation-sites			nt	-	-	-	_	-	_	-	_	-	-	_	_	_	-

O

System Diagram

Description of Raw Materials

A1 - Raw Materials Supply

This module takes into account raw material extraction, processing and energy used in the production process.

A2 - Transport to the Manufacturer

This module includes transportation of the raw materials from supplier to factory gate.

Transportation types are considered as seaway and roadway.

A3 - Manufacturing

This module includes energy and water consumption during the manufacturing process. Additionally, packaging materials are covered in this module. Followed production processes are as;

- Mixing
- Melting
- Spinning
- Binding
- Curing
- Cutting
- Packaging

A4- Transport to the Construction Site

Transport to the construction site is calculated on the basis of a scenario with the parameters described in the attached table.

Parameters A4	Module
Average Transport distance (km)	500
Type of fuel and vehicle consumption or type of vehicle used for transport.	Transport, freight, lorry >32 metric ton, EURO6

A5 - Installation into the Building

Installation into the Building is calculated on the basis of a scenario with the parameters described in the attached table. The treatment of the packaging waste after the installation of the product has been considered.

Parameters A5 Module										
Loss of materials in construction site	2%									
Packaging Wooden pallet	100% incinerated									
Packaging Plastic sheet	40% recycled, 60% landfill									

B1-B7 The Use Stage

B1: Use

B2: Maintenance

B3: Repair

B4: Replacement

B5: Refurbishment

B6: Operational Energy Use

B7: Operational Water Use

After Stone wool boards with black tissue glass fiber installation is complete, no actions or technical operations are required during the use stages until the end of life. Therefore, the Stone wool boards with black tissue glass fiber has no impact on this stage.

C1 - De-construction

The common manual dismantling impact of Stone wool boards with black tissue glass fiber is considered as very small and can be neglected in C1. Given the scenario that is assumed, environmental impact of de-construction process is not considered in this study.

C2 - Transport to Waste Processing

An average distance of 100 km has been assumed for the transport to sorting facility. Transport is calculated on the basis of a scenario with the parameters described in the attached table.

Parameters C2 Module										
Transport by road*	Lorry. 16-32 metric ton									
Distance (km)	100									
Database	Ecoinvent v3.7.1									

C3 - Waste Processing for Reuse, Recovery and/or Recycling

The material and energy expenses required for Module C3 are negligible. It is assumed that there is no sorting or processing required for Stone wool boards with black tissue glass fiber.

C4 - Final disposal

Although Stone wool boards with black tissue glass fiber products are partly recycled at their end-of-life, an established collection system does not yet exist. Therefore, the assumption chosen in this study, 100% landfill after the use phase, is the most conservative approach.

D - Reuse. Recovery or Recycling Potential

Benefits considered in this module originate from Stone wool boards with black tissue glass fiber boards packaging recycling or incineration.

Information on which life cycle stages are not considered

This EPD covers the cradle to grave and module D stages. After Stonewool Board with black tissue glass fiber installation is complete, no actions or technical operations are required during the use stages until the end of life. Therefore, the mineral wool has no impact on B1-B7 modules.

Content Declaration

Content Declaration of Stone Wool Boards with Black Tissue Glass Fiber

Product	Basalt, weight-%	Limestone, weight-%	Pre-consumer recycled materials, weight-%	Additives, weight-%	Renewable material, weight-%	Biogenic carbon, weight-%
Stone wool boards with black tissue glass fiber	50-55	25-20	15-20	5-10	0	0

Content Declaration of Packaging Material

Stone Wool Boards with Black Tissue Glass Fiber	Weight, %	Biogenic carbon, kg C
Packaging Nylon	<1	-
Wood	<1	0.009280303

Environmental Performance

Potential Environmental Impact

Mandatory Indicators According to EN 15804

Results for 1 m2 of Stone Wool Boards with Black Tissue Glass Fiber													
							C1	C2	C3	C4	D		
Indicator			A1-3 Total				De-construction demolition		Waste processing		Recycling- potential		
GWP-fossil	kg CO2 eq	4.97	4.76	0.13	5.1E-02	0	0	0.03	0	0.01	-0.01		
GWP-biogenic	kg CO2 eq	4.83	-0.08	2.2E-04	4.90	0	0	4.5E-05	0	4.6E-05	-2.1E-05		
GWP- luluc	kg CO2 eq	0.01	0.01	3.8E-05	9E-06	0	0	7.7E-06	0	4.0E-06	-3.0E-06		
GWP-total	kg CO2 eq	9.80	4.69	0.13	4.95	0	0	0.03	0	0.01	-0.01		
ODP	kg CFC11 eq	3.3E-07	2.8E-07	3.0E-08	3.5E-09	0	0	5.9E-09	0	6.1E-09	-2.2E-10		
АР	mol H+ eq	0.04	0.04	4.1E-04	5.5E-04	0	0	8.1E-05	0	1.4E-04	-3.4E-05		
EP-freshwater	kg PO43-	3.2E-03	2.9E-03	4.5E-05	1.4E-04	0	0	8.9E-06	0	1.9E-05	-2.9E-06		
EP-aquatic freshwater	kg P eq	2.5E-04	2.5E-04	1.1E-06	6.9E-07	0	0	2.2E-07	0	1.5E-07	-1.7E-07		
EP- marine	kg N eq	4.9E-03	4.5E-03	9.0E-05	2.6E-04	0	0	1.8E-05	0	4.8E-05	-6.6E-06		
EP-terrestrial	mol N eq	0.07	0.07	1.0E-03	2.8E-03	0	0	2.0E-04	0	5.3E-04	-7.3E-05		
POCP	kg NMVOC eq	0.02	0.02	3.9E-04	6.8E-04	0	0	7.7E-05	0	1.5E-04	-3.0E-05		
ADP-minerals & metals	kg Sb eq	1.2E-05	1.1E-05	3.0E-07	1.0E-07	0	0	6.0E-08	0	3.3E-08	-5.4E-08		
ADP-fossil*	MJ, net calorif- ic value	63.2	60.2	2.00	0.43	0	0	0.40	0	0.41	-0.27		
WDP	m3 world eq. deprived	1.18	1.19	0.01	-0.04	0	0	1.5E-03	0	0.02	-3.9E-03		

GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment; EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

^{*} Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

Potential Environmental Impact

Additional Mandatory and Voluntary Indicators

	Results according to PCR2019:14 for 1 m2 of Stone Wool Boards with Black Tissue Glass Fiber														
							C1	C2	С3	C4					
Indicator			A1-3 Total	A4							Recycling- potential				
GWP - GHG ¹	kg CO2 eq	4.75	4.54	0.12	0.05	0	0	0.02	0	0.01	-0.01				

	Results according to EN 15804+A2 for 1 m2 of Stone Wool Boards with Black Tissue Glass Fiber														
								C2	С3						
Indicator			A1-3 Total				De-construction demolition		Waste processing		Recycling- potential				
PM/RI	disease inc.	3.9E-07	3.7E-07	1.1E-08	5.6E-09	0	0	2.2E-09	0	2.7E-09	-3.0E-10				
IRP	kBq U-235 eq	0.06	0.05	0.01	6.3E-04	0	0	1.7E-03	0	1.7E-03	-1.3E-04				
ET-freshwater	CTUe	90.4	87.4	1.67	0.75	0	0	0.33	0	0.26	-0.09				
HT-cancer	CTUh	2.3E-08	2.3E-08	4.7E-11	1.6E-10	0	0	9.5E-12	0	7.7E-12	1.4E-11				
HT-non-cancer	CTUh	4.7E-08	3.7E-08	1.6E-09	7.0E-09	0	0	3.2E-10	0	1.6E-10	4.3E-10				
SQP	Pt	26.5	22.8	2.27	0.15	0	0	0.45	0	0.87	-0.01				

GWP-GHG = Global Warming Potential total excl. biogenic carbon following IPCC AR5 methodology; IRP = Ionizing radiation, human health; ET-freshwater = Eco-toxicity (freshwater); HT-cancer = Human toxicity, cancer effects; HT-non-cancer = Human toxicity, non-cancer effects; SQP = Potential soil quality index (SQP)

1 The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

Use of Resources

				Results for 1 r	m2 of Stone Woo	ol Boards wit	h Black Tissue Glass I	Fiber			
									С3		
Indicator							De-construction demolition		Waste processing		Recycling- potential
PERE	МЈ	4.53	4.49	0.02	0.01	0	0	4.3E-03	0	3.3E-03	-3.7E-03
PERM	MJ	0	0	0	0	0	0	0	0	0	0
PERT	MJ	4.53	4.49	0.02	0.01	0	0	4.3E-03	0	3.3E-03	-3.7E-03
PENRE	MJ	46.0	42.8	2.13	0.47	0	0	0.43	0	0.44	-0.29
PENRM	MJ	22.0	22.0	0	0	0	0	0	0	0	0
PENRT	MJ	67.9	64.8	2.13	0.47	0	0	0.43	0	0.44	-0.29
SM	kg	0.30	0.30	0	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0	0
NRSF	МЈ	0	0	0	0	0	0	0	0	0	0
FW	m³	0.17	0.17	1.7E-03	2.2E-03	0	0	0	0	6.6E-04	0

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

Waste Production

Results for 1 m2 of Stone Wool Boards with Black Tissue Glass Fiber											
Indicator			A1-3 Total					C3	C3	C4	
											Recycling- potential
Hazardous waste disposed	kg	1.1E-04	1.1E-04	0	0	0	0	0	0	0	0
Non-hazardous waste disposed	kg	1.0	0	0	1.9E-03	0	0	0	0	1.00	0
Radioactive waste disposed	kg	0	0	0	0	0	0	0	0	0	0

Output Flows

Results for 1 m2 of Stone Wool Boards with Black Tissue Glass Fiber											
Indicator			A1-3 Total	A4							
											Recycling- potential
Components for re-use	kg	0	0	0	0	0	0	0	0	0	0
Material for recycling	kg	0	0	0	1.3E-03	0	0	0	0	0	-1.3E-03
Materials for energy recovery	kg	3.35	0	0	3.35	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0	0	0	0

References

ISO 14040: 2021

Environmental management - Life cycle assessment - Principles and framework

ISO 14044: 2021

Environmental management - Life cycle assessment - Requirements and guidelines

ISO 14025: 2006

Environmental labels and declarations - Type III environmental declarations - Principles and procedures

ISO 14020: 2000

Environmental labels and declarations - General principles

EN 15804:2012+A2: 2019

Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products

c-PCR005

Thermal insulation products

EN 16783: 2017

Thermal insulation products — Product category rules (PCR) for factory made and in-situ formed products for preparing environmental product declarations

The International EPD® System

www.environdec.com

The International EPD® System

The General Programme Instructions v4.0

The International EPD® System

PCR 2019:14 Construction products v1.1 (EN 15804:A2)

Ecoinvent 3.7.1

www.ecoinvent.org

SimaPro LCA Software

www.simapro.com

RBS Ravago

https://ravagobuildingsolutions.com

CONTACT

Third party verfier

Ing. Luca Giacomello. PMP® Via Leonardo Fea 35 10148 Torino - Italy

Owner of Declaration

RBS RAVAGO İNŞAAT YALITIM ÜRÜNLERİ A.Ş. Organize San. Böl. 20. Cad. No: 54 Kayseri / TURKEY https://ravagobuildingsolutions.com

LCA Study & EDP Design Conducted By

Semtrio Sustainability Consulting BUDOTEK Teknopark, No 8/27 Umraniye/Istanbul Turkey www.semtrio.com

